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1 Summary   
We investigated a technique for enabling systems to recover from data structure 
corruption errors. This technique contains three components. The first component 
observes the execution of training runs of the program to learn key data structure 
consistency constraints. The second component takes the learned data structure 
consistency constraints and examines production runs to detect violations of the 
constraints. The third component updates the corrupted data structures to eliminate the 
violations. The goal is not necessarily to restore the data structures to the state in 
which a (hypothetical) correct program would have left it — although in some cases 
our system may do this. Our goal is instead to deliver repaired data structures that 
satisfy the basic consistency assumptions of the program, enabling the program to 
continue to operate successfully.  
 
We built a prototype system that contained these three components and applied this 
system to two programs, BIND (part of the Internet Domain Name System (DNS)) and 
FreeCiv (a freely distributed multi-player game). Our BIND experience indicates that 
our technique can eliminate previously existing undesirable behavior in this program. 
We applied our technique to FreeCiv in the context of a Red Team experiment. The 
results of this experiment show that, on this program and for the workload in the Red 
Team experiment, our system significantly out-performed the DARPA SRS metrics: it 
recognized 80% (not just 10%) of the attacks, and it recovered from 60% (not just 
5%) of them. We also performed other activities as part of this project.  
 

2 Introduction  
 
Unlike biological organisms, which can respond robustly to damage from internal 
errors and external attacks by healing the damage and continuing to operate, computer 
systems have traditionally lacked mechanisms that allow them to detect and repair 
damage and avoid similar problems in the future.  
 
One of the most important aspects of software systems is the integrity of its data 
structures, which store the information that the program manipulates. To correctly 
represent the information that a program manipulates, its information representation 
must satisfy key consistency constraints. If an attack, software error, or some other 
anomaly causes the information representation to become inconsistent, the basic 
assumptions under which the software was developed no longer hold. In this case, the 
software typically behaves in an unpredictable manner and may even fail 
catastrophically.  
 
We proposed to apply a new technique, consistency constraint repair, to allow the 
system to heal such information representation damage and continue to execute 
successfully. A system that uses our technique accepts a specification of key 
information representation consistency constraints. It then dynamically detects and 
repairs parts of the information representation that violate these constraints. Our goal 
is not necessarily to restore the information representation to the state in which a 
(hypothetical) correct program would have left it — although in some cases our 
system may do this. Our goal is instead to deliver a repaired information 
representation that satisfies the basic consistency assumptions of the program, 
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enabling the program to continue to operate successfully. We proposed a system with 
the following components:  
 

• Automatically Learning Consistency Constraints: Consistency constraint 
repair requires a specification of the consistency constraints. Previous systems 
used constraints provided by human developers. We proposed to apply 
machine learning technology that examines runtime behavior to learn key 
properties of successful executions. This approach promised to reduce the 
burden on the developer and help to ensure that the extracted properties are 
comprehensive, i.e., that they capture those key properties whose satisfaction 
will ensure that the program is able to continue to operate successfully after 
repair.  

 
• Error Detection: Our consistency constraint repair algorithm contained an 

algorithm that can examine the information representation to find violations of 
the consistency constraints. We proposed to use this technology to enable the 
system to localize the source of errors that cause consistency constraint 
violations. We anticipated that the system would perform repeated consistency 
checks, ideally enabling it to find constraint violations quickly.  

 
• Repair: Once the system found an error, we proposed to explore a repair 

strategy that used the automatically learned consistency constraints to repair 
the data structures so that they satisfied the key consistency constraints. The 
goal is to enable the program to recover from whatever caused the damage in 
the first place to continue to execute and successfully serve the needs of its 
users.  

 
We started the project with a solid foundation of existing techniques and 
implementations. Specifically, we had: an implementation of our information 
representation repair technique (this implementation used manually-developed 
specifications), an implementation of our error localization technique (this 
implementation also used manually-developed specifications), and an implementation 
of a technique that learns operational abstractions that can be used in place of 
manually-developed specifications. We had positive results using each of these 
techniques in isolation. One of the goals of the research was to apply the techniques, 
synergistically and in combination, to enable error detection and recovery.  
 
We identified one of the most important aspects of this combination to be the 
development of a common constraint language that would allow the data structure 
consistency constraint learning component to interact successfully with the data 
structure consistency constraint violation detection component and the data structure 
consistency constraint repair component. We anticipated that, given the solid 
foundation of existing components, we would be able to obtain meaningful results 
within the eighteen month time frame of the contract.  
 
We were successful in realizing the combination of the learning, error detection, and 
repair components. As part of this combination we found that we needed to modify 
each of the basic components so that they could work more successfully with each 
other. On the learning side these modifications included the addition of new 
specification properties to the consistency constraint learning, and augmenting it to 
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produce output in the format required by the data structure repair tool. We 
implemented a new inference algorithm that greatly improved performance for 
programs that have large numbers of variables. We enabled our system to run online 
(without writing trace files to disk). We enhanced support for C and added support for 
C++. We added support for Java version 5 and have built a new infrastructure for Java 
instrumentation. We improved portability to the Windows operating system. On the 
data structure consistency constraint repair side we integrated support for working 
with the consistency constraint language. One of the important points of focus was 
scalability. We have detailed these and other changes in our quarterly reports.  
 

3 Methods, Assumptions, Procedures  
 
We adopted an experimental approach to our research. Early in the project we 
performed case studies on selected programs to evaluate our techniques. Our approach 
included running our invariant detection tool (Daikon) on a variety of programs to 
evaluate its capabilities. We also ran our data structure repair tool on selected 
programs with either real-world data corruption errors or errors that we obtained by 
using fault injection. In general, we observed the results we obtained and the general 
process of obtaining these results and used them to drive further development. We 
also identified any weaknesses or missing pieces and worked towards remedying the 
weaknesses and filling in any missing pieces. We also made large parts of our 
software available for download via the Internet.  
 
During the course of the project we devoted a major effort to integrating and 
evaluating the various different components. Our integration efforts focused on 
developing software to connect the different components. Once the software was 
developed we tested it and updated it as the tests indicated was necessary. We 
evaluated our techniques by applying them to programs with different kinds of data 
structure corruption errors. During this process we observed any deficiencies and 
developed techniques that addressed these deficiencies. We developed the main 
results of the project on two programs, BIND (part of the Internet Domain Name 
System (DNS)) and FreeCiv (a freely distributed multi-player game).  
 
The underlying assumption behind this research is that these empirical techniques will 
generalize to larger classes of programs. We see no way to test these assumptions 
other than testing our techniques out on programs.  
 
In the later part of the project our activities centered around a Red Team exercise. The 
general idea behind a Red Team exercise is to set up an adversarial contest between a 
Red Team (in this case, a group from Raba, Inc.) and a Blue Team (in this case, the 
MIT group). A White Team officiated the contest.  
 
The Red Team exercise centered around a specific program, FreeCiv. We used our 
learning tool to automatically learn key consistency constraints by observing its 
executions on standard test inputs. We used the produced data structure consistency 
constraints to augment FreeCiv with data structure consistency violation detection and 
repair. We then developed an interface that enabled the Red Team to corrupt various 
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parts of the data structures. We interacted with the Red Team to establish the 
parameters of the Red Team exercise, and performed the exercise.  
 

4 Results and Discussion  
 
We next present our results automatically generating data structure consistency 
specifications and using these data structure consistency specifications for data 
structure repair in the BIND and FreeCiv software systems.  
 

4.1 Methodology  
 
For each system, we selected an initial fault-free workload and identified the data 
structures of interest. We then executed the systems on this workload and used the 
Kvasir front end (a part of Daikon) to record a trace of the execution. We used Daikon 
to automatically extract a consistency specification for the data structures of interest 
from this trace. We manually reviewed this consistency specification and (for our two 
systems) found nothing we wanted to change.  
 
We next used the data structure repair tool to compile the consistency specifications 
into C code that detects and repairs any inconsistencies in the data structures, then 
augment the programs with the repair code. Finally, we tested the ability of the 
resulting data structure repair algorithm to enable the system to recover from data 
structure corruptions. For BIND, we used a workload that exercised known data 
structure corruption errors. For FreeCiv, the Red Team used fault injection to corrupt 
the data structures. We then observed the continued execution of the program after the 
resulting repair. Note that the entire process of obtaining and enforcing the data 
structure consistency specification, with the exception of the specification review, is 
entirely automated.  
 
For FreeCiv we had previously developed a manual specification. We evaluate the 
automatically generated manual specification, in part, by comparing it to this manual 
specification. Our evaluation focuses on the coverage of the properties in the 
automatically generated specification and the difficulty of developing the manual 
specification from scratch compared with reviewing the automatically generated 
specification.  
 

4.2 BIND  
 
The Domain Name System (DNS) is an Internet service responsible most notably for 
translating human-readable computer names (such as www.mit.edu) into numeric IP 
addresses (such as 18.7.22.83). BIND (http://www.isc.org/sw/bind/) is an open-source 
software suite which includes the most commonly used DNS server on the Internet. 
Because of BIND’s ubiquity on the Internet, it is a frequent target of security attacks, 
and a number of serious flaws have been found in it over its decades of use. The most 
recent major revision of BIND, version 9, is an almost complete rewrite, intended 
among other changes to be more secure.  
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BIND’s basic operation is straightforward: it listens for DNS requests on a network 
socket and sends reply packets containing information from the DNS database. Each 
Internet domain (such as .uk, .google.com, or .csail.mit.edu) has one or more 
“authoritative” servers that provide information about hosts (computers) in that 
domain and point to its sub-domains; in addition most networks have “caching” 
servers which handle requests from clients (such as desktop computers), communicate 
with authoritative servers, and retain results for a limited time period so that repeated 
requests can be processed more efficiently. Currently most DNS traffic on the Internet 
does not use any form of strong authentication, but an extended version of the DNS 
protocol, known as DNSSEC, allows authoritative information to be 
cryptographically signed by a domain’s owner.  
 

4.2.1 BIND Errors  
 
The BIND developers maintain a list of security-critical bugs 
(http://www.isc.org/sw/bind/bind-security.php). Many earlier BIND security bugs 
were classic buffer overruns. Existing tools can detect and correct such problems [30, 
12, 27], which have also become less common in recent BIND versions, perhaps 
because of more careful coding practices and auditing.  
 
Our evaluation considers attacks involving higher-level data structure changes, which 
represent a greater proportion of recent vulnerabilities.1 We selected two previously-
discovered (and -corrected) problems: the “negative caching bug” (section 4.2.2) and 
the “NSEC validation bug” (section 4.2.3). Both of these represent denial-of-service 
vulnerabilities: a malicious user interacting with BIND could prevent the server from 
handling legitimate requests. The bugs existed in historical versions of BIND; to 
simplify our experiments, we reproduced them by introducing the same defects into 
the most recent version of BIND, 9.3.1.  
 

4.2.2 Negative Caching Error  
 
An authoritative DNS server can return either positive results (for instance, 
www.mit.edu exists and its address is 18.7.22.83) or negative ones (for instance, no 
host qqq.mit.edu exists). Both positive and negative results may be cached, and both 
positive and negative replies contain a field (called the TTL, or “time-to-live”) 
indicating for how long they should be cached. Versions of BIND 8 prior to 8.4.3 
contained a bug in the way they cached some negative results. When a caching server 
received domain information in a reply from an authoritative server, it performed 
several checks on the consistency of the data: for instance, the server from which the 
data originated should be the authoritative server for the domain the results refer to, 
and the results should pertain to the domain as the original query. If these checks fail, 
the results are considered illegitimate, and discarded. Because of a logic error in 
vulnerable versions of BIND, however, a packet that had been determined to be 
illegitimate was sometimes still added to the cache of negative information.  

                                                 
1 Code-level techniques such as ours probably are not effective in addressing protocol errors — fundamental algorithmic or 
design errors — which are another category of common problems. 
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To exploit this bug, an attacker who controls an authoritative server for some domain 
modifies it so that when replying to requests, it returns negative results about some 
unrelated domain. For instance, if the attacker controls attacker.com, a query to that 
domain’s server for the address of mailserver.attacker.com might yield a reply saying 
that “www.mit.edu does not exist”. The attacker then gets a vulnerable caching server 
to make a request to the malicious server, for instance by sending an email with a 
“From” address at attacker.com to a mail server that uses the vulnerable caching DNS 
server. The caching server will incorrectly retain the negative information, so that any 
attempts by other users of the caching server to access the target host (www.mit.edu 
in the example) will fail until the information expires from the cache. Normally, 
negative results have a small TTL, and so would expire quickly, but in this attack the 
TTL for the incorrect reply is chosen by the attacker, and can be arbitrarily long.  
 
Obtaining Specifications: We selected components of the message data structure of 
interest. Daikon then observed the execution of BIND as it responded to several dozen 
queries, mostly for domain names that did not exist. We instructed Daikon to observe 
the dns_ncache_add() function, which runs every time a query for a non-existent 
address arrives. This function adds an entry for that address to the negative cache.  
 
The resulting specifications included bounds on the time-to-live (TTL) field of a 
message that is added to the BIND negative cache.  
 
message.sections[2].head.list.head.ttl <= 900  
message.sections[2].head.list.head.ttl >= 29  
 
The exact numbers may differ from the ones shown (900 seconds, which is 15 
minutes), depending on conditions in the server’s environment. In particular, different 
authoritative servers will supply different (valid) TTL values.  
 
Effect of Repair: Without repair, we verified that an attacker can set an arbitrarily 
large time-to-live on a (bogus) negative reply; as a result, the attacked DNS server 
will retain (and propagate) the bogus negative reply for days, weeks, or longer.  
 
When our tool’s repair code is active, the effects of the negative caching bug are 
ameliorated. The repair code detects that the hostile server’s response has an 
excessive TTL value; it repairs the data structure holding the TTL, setting the TTL to 
the inferred upper bound of 900 seconds. Though the malicious reply is still cached, 
its TTL is limited to the maximum TTL obtained by observing legitimate data (such 
as 15 minutes), rather than the very long TTL chosen by the attacker. After this period 
expires, the incorrect information is flushed from the cache, and the DNS server again 
operates properly.  
 

4.2.3 NSEC Validation Error  
 
The NSEC validation error, reported in early 2005, is part of the validation that BIND 
can perform when processing authoritative replies. Under the DNSSEC security 
extensions, each piece of data returned by a server may be accompanied by a 
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cryptographic signature, which can be checked to verify its authenticity. A particular 
complication in DNSSEC concerns negative results: since there is normally no record 
corresponding to a negative result, there is no obvious object to be signed. To allow 
the authentication of negative results, DNSSEC introduces a new kind of record, of 
type “NSEC”, to record negative information. For each name that exists in a domain, 
there is an NSEC record that lists the next name in the domain, in a cyclic 
alphabetical order, as well as which kinds of data exist for the name. When a request 
for a nonexistent name is received, a DNSSEC-compliant server can send the NSEC 
record for the alphabetically closest previous existing name, and its signature, to 
convince a recipient that no such data exists; similarly an NSEC record can prove that 
while a name exists, no data of the requested type is available.  
 
BIND version 9.3.0 contained a bug in the code to check such signed negative 
responses. Normally, a secure negative reply DNS packet would contain a section 
with four records: an NSEC record verifying the nonexistence of the requested record, 
an SOA record indicating that the server that generated the reply data is the legitimate 
authority for the domain in question, and two RRSIG signature records containing 
signatures for the aforementioned other records. The DNS protocol places no 
requirements or significance on the order of the four records, but by convention BIND 
and other servers usually use the order SOA, RRSIG, NSEC, RRSIG.  
 
The code in BIND 9.3.0 processes the records in the order in which they appear in the 
reply packet. At one point, it performs a check that is meant to determine whether the 
record currently being examined is an NSEC record, but because of a coding error, the 
check instead succeeds whenever an NSEC record has been seen so far in the entire 
section. If a malicious server sends the records in an unconventional order, such as 
NSEC, RRSIG, SOA, RRSIG, and the NSEC record fails to verify, the vulnerable 
server will attempt to perform NSEC verification on an SOA record: the code that 
performs this verification checks the type tag on the record, sees that it is unexpected, 
and triggers an internal assertion failure that causes the server to immediately 
terminate. The server will of course then be unable to respond to any requests until it 
is restarted (e.g., manually).  
 
Obtaining Specifications: We selected components of the nsecset and rdataset data 
structures to be of interest. Daikon then observed executions of a BIND server that 
was communicating with a second BIND server. The server being observed was 
configured to cache DNSSEC entries. The second server was configured to provide 
authoritative DNSSEC data for a domain. The observed server was configured to 
forward requests the second server, and to consider the second server’s public key 
valid for authentication. Our testing made various queries of the first server, and we 
instructed Daikon to observe two functions nsecnoexistnodata() and 
isc_rdatalist_first().  
 
The function nsecnoexistnodata() checks a record set containing an NSEC record to 
determine whether that record correctly authenticates the nonexistence of a name, or 
the nonexistence of some particular data type at that name. In this case, the record set 
is implemented as an “rdatalist” data structure. The isc_rdatalist_first() function 
initializes an iterator on an rdatalist to point to the first record in the list, or returns an 
error condition if the list is empty.  
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The inferred specifications were as follows.  
 
../../../lib/dns/validator.c.nsecnoexistnodata():::ENTER  
nsecset != null  
nsecset.type = = 47  
 
..isc__rdatalist_first():::ENTER 
 (rdataset.private1.rdata.head != null)  = => 
    (rdataset.type = = rdataset.private1.rdata.head.type) 
 rdataset != null 
 rdataset.type >= 0 
 rdataset.private1 != null 
 (rdataset.private1.rdata.head != null)  = =>  
    (rdataset.private1.rdata.head.type >= 0)  
 
Two properties are relevant for the repair. The first, nsecset.type = = 47, indicates that 
type of the record set passed to nsecnoexistnodata() must always be 47, the value 
which denotes an NSEC record. A second property, (rdataset.private1.rdata.head != 
null) = => (rdataset.type = = rdataset.private1.rdata.head.type), indicates that if an 
“rdatalist” record set contains a record, that record’s type must be the same as the type 
of the record set overall.  
 
Effect of Repair: Without repair, we verified that an attacker can crash the BIND 
server by sending records in an unexpected but legal order in a reply packet. This 
results in a complete denial of service until the BIND server is restarted.  
 
When our tool’s repair code is active, the NSEC validation bug is rendered harmless. 
In the nsecnoexistnodata() function, the repair code detects that the record field type is 
unexpected, and changes it to 47. Then, at the isc__rdatalist_first() function, the repair 
code detects that rdataset.private1.rdata.head.type ≠ rdataset.type, and so it sets the 
rdataset.private1.rdata.head field to null — in other words, it removes the offending 
record. Existing code in BIND then sees that the record set is empty, so that 
verification cannot continue. BIND rejects the packet as invalid, and continues normal 
operation without failing.  
 

4.3 FreeCiv  
 
FreeCiv is a freely distributed, multiplayer, client-server strategy game 
(http://www.freeciv.org/). It contains a total of 93,612 lines of code of which the 
FreeCiv server uses 78,555 lines. This server maintains a map of the game world. 
Each tile in this map has a terrain value chosen from a set of legal terrain values. 
Additionally, cities may be placed on the tiles.  
 

4.3.1 Obtaining Specifications 
 
We identified the civmap, tile, and map_positions data structures to be of interest. 
Within these data structures Daikon observed all primitive data type fields (int, char, 
etc.). It did not observe pointer fields — the data structure repair algorithm 
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automatically protects against basic pointer corruption by enforcing the constraint that 
pointer fields must either be null or point to a valid region of memory.  
 
Daikon observed runs of FreeCiv in an automatic execution mode in which several 
computer-generated players play against each other. We presented it with runs with a 
variety of parameter settings; these settings include values such as the number of 
players, the random seeds, the size of the game map, the percentage of various types 
of terrain, the map generation algorithm, and the time when the game ended. Running 
the game with a variety of parameters avoided the overspecialization that could 
otherwise result if Daikon only observed runs with fixed parameter values.  
 
A review of the generated specifications revealed that there was still some 
overspecialization in the automatic specification generation process. But all of the 
overspecialized properties happened to be filtered out by a component of the repair 
algorithm generator that discarded properties that might cause the repair algorithm to 
loop forever if enforced. We therefore used the automatically generated specifications 
without change.  
 

4.3.2 Comparison with Manually-Generated Specifications  
 
In previous work, we manually developed specifications for the FreeCiv program. We 
found several advantages to automatically inferring specifications. The first advantage 
is that automatically inferring the specification took less effort. We developed a test 
suite containing 11 different game configurations, then ran FreeCiv to generate 
execution traces for each of these test suites, and then used Daikon to automatically 
infer these invariants. We then reviewed the invariants, using the properties as a 
foundation from which to build enough of an understanding of the program’s 
operation to verify that the properties were not overly specialized to the test suite.  
 
To manually develop specifications, we had to understand how FreeCiv manipulated 
the data structures and then write the appropriate invariants. In our experience 
manually developing the specification required significantly more effort than 
obtaining the specification automatically via Daikon. Note that the original FreeCiv 
specification was written by the developer of the repair system; we imagine that 
manually developing specifications would be more difficult for novice users and, 
therefore, they would find even greater benefit.  
 
The second advantage is that the inferred specification had significantly more 
invariants than the original manually-developed specification: the inferred 
specification contains 21 constraints while the original manually-developed 
specification only contains 6 constraints. Many of these constraints were missing 
because we were simply unaware of them.  
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Figure 1: Number of executions that crash, after a given number of data 
structure corruptions are simultaneously applied. The table indicates how often 
the original program crashed, and how often the program crashed if augmented 
with data structure repair. 
 
 
The third advantage is that inferred specifications may be more likely to be correct. 
Automatically inferring specifications eliminates the errors that a developer may make 
when developing a specification. For example, a developer may forget to write a 
constraint or be unaware of a constraint.  
 
However, automatic inference of specifications has limitations. The inferred 
specifications are limited to the invariants that Daikon supports. For example, the 
inferred FreeCiv specification is missing an invariant that states that a city is 
referenced by at most one tile and an invariant that ensures that cities are not placed 
on tiles with ocean terrain values. Daikon also requires the application to have a test 
suite. However, we expect that in most cases that a developer will have a pre-existing 
test suite that could be used. Finally, this technique does not eliminate all manual 
effort. The developer may still need to manually review the specifications to ensure 
that the invariants are not overspecialized.  
 

4.3.3 A Fault Injection Experiment  
 
To support our fault injection experiments, we developed a fault injection API that 
allowed an attacker to easily corrupt fields of interest. We then used this API to 
explore the ability of our technique to enable FreeCiv to recover from data structure 
corruptions. We used as our measure of success the number of program crashes that 
the repair system was able to avert. We measured this quantity by adding the 
corruption API both to the original program and also to a version of the program that 
had been instrumented with repair code. We then applied the same corruptions to both 
programs and counted the number of times that each one crashed.  
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Figure 1 reports the results. The first column gives the number of memory locations 
that the fault injection corrupted. The second column gives the number of times the 
original FreeCiv program crashed out of 100 executions. The third column gives the 
number of times the repair-augmented FreeCiv program crashed out of 100 
executions. And the final column gives the number of crashes that data structure 
repair averted (the difference between the second and third columns) out of 100 
executions. When 50 memory locations are simultaneously corrupted, the original 
FreeCiv program crashes 92% of the time. By contrast a version of FreeCiv 
augmented with data structure repair crashed only 12 times, because the repair code 
detected and corrected the corruptions. Therefore, with 50 corrupted memory 
locations data structure repair averted 80 crashes. When 100 fields are simultaneously 
corrupted, the original FreeCiv program crashed 95 times, compared to 41 times for 
the augmented version of FreeCiv.  
 
In general, both the original version and the version with repair incur more crashes as 
the number of corrupted memory locations increases. Note, however, the fragility of 
the original version — it almost always crashes regardless of the number of corrupted 
memory locations. Repair can avert a substantial number of these crashes.  
 

4.3.4 Red Team Activities  
 
We also participated in a Red Team activity in which a team of engineers attempted to 
use the corruption API to cause FreeCiv to fail. This activity involved a Blue Team 
(the authors) and an outside three-person Red Team whose responsibility it was to 
attack the system provided by the Blue Team. The Red Team was given complete 
information about the system they were attacking, including the following:  
 

• All tools used by the Blue Team (in source and binary form), including 
Daikon and the repair compiler, and manuals/instructions for their use.  

• FreeCiv source code (the version that we are using),  
• The FreeCiv test cases used to obtain the data structure consistency 

specifications.  
• The data structure consistency specification. This is the output of Daikon, and 

is the input to the repair compiler. It indicates exactly what properties the 
instrumented version of the program will check and will attempt to re-
establish if found to be false.  

• The corruption API. This API lets the Red Team directly modify the contents 
of memory, by specifying a variable/field and a new value for it. The API also 
permits examining data structures and logging repair tool actions, permitting 
understanding and confirmation of the system’s behavior.  

 
The Red Team was given the various materials and documents between 3 months and 
1 week in advance. They were on-site at MIT for three days. Note that by examining 
the specification and the tool documentation and source code, and by running the 
system, the Red Team could determine which corruptions our system would detect 
and what actions it would take.  
 
We used failures of the program as our measure of success. The Red Team performed 
many attacks, and an attack was said to succeed if it crashed the program, and to fail 
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if it did not crash the program. All parties knew which attacks crashed the original, 
unprotected program, so the Red Team focused on those.  
 
The Red Team used the provided corruption API (and other mechanisms, see below) 
to inject corruptions into the data structures of the running FreeCiv program. The Red 
Team devised the corruptions using techniques including intuition, examination of the 
specification and the repair tool, and random generation.  
 
Our repair system detected 80% of the data structure corruptions that were introduced 
by the Red Team and took successful corrective action (repaired the data structure 
sufficiently for the program to continue without crashing) in 75% of those cases. 
Examples of corruptions that were successful repaired included random corruptions, 
wholesale replacement of certain data structures, attempts to violate specific 
properties that the Red Team had seen in the inferred specification, and setting data 
structures to null.  
 
The Red Team was unable to induce a non-terminating repair — that is a data 
structure corruption such that in repairing the structure, the system enters an endless 
loop of repairs. The Red Team was also unable to mount an additive attack, in which 
a sequence of repairs (in response to a sequence of corruptions) were made that 
satisfied the specification but which degraded system behavior to the point of a later 
failure.  
 
The Red Team’s main successes in defeating the repair system (and crashing FreeCiv) 
fell into four main categories. The first was a simultaneous corruption of both the x 
and y map sizes — although the data structure repair algorithm was able to use the 
size of the allocated map data structure to detect a corruption, it was unable to come 
up with valid x and y values that, when multiplied, would produce that size. The 
second Red Team success involved corruptions that triggered assertion violations in 
the target program. In retrospect, it may have been possible to avoid these kinds of 
failures by simply disabling assertions. The third kind of Red Team successes 
involved many simultaneous corruptions that simply overwhelmed the program with 
an enormous amount of lost information. The last class of Red Team successes 
involved the use of the GDB debugger to corrupt arbitrary memory locations far (in 
the execution stream) from the point in the execution that checked and repaired the 
data structures. The effect was either a failure before the repair code was encountered, 
or — as in two of the other three types of Red Team success — the propagation of 
corruption into so many data structures that successful recovery was not possible.  
 

4.4 Discussion  
Our two programs exemplify very different ways in which automatically generated 
data structure consistency specifications in combination with data structure repair can 
affect the execution of the program. In BIND, our techniques ameliorated or even 
eliminated the effects of security attacks. Intriguingly, one of these attacks is arguably 
not even a data structure corruption attack — it simply injects an undesirable (but 
arguably not inconsistent) value into a data structure. By keeping this value within 
observed bounds, our technique ameliorates the negative impact of this value and may 
keep the program’s behavior closer to its anticipated behavior.  
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FreeCiv illustrates that our technique can help systems recover from surprisingly 
extensive damage, in particular much more extensive damage than is likely to result 
from any single data structure corruption error. We were surprised at this result (we 
anticipated that, even with repair, the system would be much more brittle than it 
turned out to be) and consider it to be an encouraging indication of the effectiveness 
of our technique.  
 
One issue that came up is that the repair algorithm statically generates a repair 
strategy that is guaranteed to terminate no matter what data structure exists at run 
time. Essentially, it ensures this by considering all possible interactions among the 
data structure properties and determining whether there are any possible dependence 
cycles between repair actions for the properties. This static guarantee is useful, but it 
means that if the specification is very rich (there are many properties or the properties 
are very detailed), then they are likely to interact in many ways. As a result, the 
algorithm may state that it cannot statically guarantee termination (even if termination 
could be guaranteed dynamically or always occurred in practice). While our current 
repair system deals with this issue, in part, by discarding properties that might lead to 
an infinite repair loop, it might be worthwhile to consider alternate approaches that 
abandon the termination guarantee in return for handling more properties.  
 

5 Other Activities  
 
In addition to the focus on data structure consistency constraint learning and 
enforcement, we performed a variety of other activities under this contract. These 
include investigating techniques for mode selection based on introspection into the 
program’s behavior. It takes effect when a program is underperforming (likely due to 
an unexpected environment) and automatically chooses a program modality. We 
investigated applications of various kinds of failure-oblivious computing to enhance 
the effectiveness of our repair techniques. Failure-oblivious computing is a suite of 
techniques that are designed to keep programs executing through otherwise 
potentially fatal errors. We also worked on software transactions, which are another 
way of promoting data structure consistency. We also worked on an evaluation of our 
updgrade selection activities. We also presented a demo of our techniques at 
DARPATECH.  
 

6 Related Work  
 
We survey related work in invariant inference, software error detection [5, 8, 18, 4], 
traditional error recovery, manual data structure repair, and databases.  
 
 

6.1 Invariant Inference  
 
Our technique uses dynamic (runtime) analysis to extract semantic properties of the 
program’s computation. This choice is arbitrary; for example, one could alternately 
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perform a static analysis (such as abstract interpretation [6]) to obtain semantic 
properties.  
 
We use the Daikon dynamic invariant detector to generate runtime properties [13]. Its 
outputs are likely program properties, each a mathematical description of observed 
relationships among values that the program computes. Together, these properties 
form an operational abstraction that, like a formal specification, contains 
preconditions, postconditions, and object invariants.  
 
Daikon detects properties at specific program points such as procedure entries and 
exits; each program point is treated independently. The invariant detector is provided 
with a trace that contains, for each execution of a program point, the values of all 
variables in scope at that point.  
 
For scalar variables x, y, and z, and computed constants a, b, and c, some examples of 
checked properties are: equality with a constant (x = a) or a small set of constants (x ε 
{a,b,c}), lying in a range (a ≤ x ≤ b), non-zero, modulus (x ≡ a (mod b)), linear 
relationships (z = ax + by + c), ordering (x ≤ y), and functions (y = fn(x)). Properties 
involving a sequence variable (such as an array or linked list) include minimum and 
maximum sequence values, lexicographical ordering, element ordering, properties 
holding for all elements in the sequence, and membership (x ε y). Given two 
sequences, some example checked properties are elementwise linear relationship, 
lexicographic comparison, and subsequence relationship. Finally, Daikon can detect 
The properties are sound over the observed executions but are not guaranteed to be 
implications such as “if p≠null then p.value > x” and disjunctions such as “ 
p.value > limit or p.left ε mytree”.  
 
true in general. In particular, different properties are true over faulty and non-faulty 
runs. The Daikon invariant detector uses a generate-and-check algorithm to postulate 
properties over program variables and other quantities, to check these properties 
against runtime values, and then to report those that are never falsified. Daikon uses 
additional static and dynamic analysis to further improve the output [14].  
 

6.2 Traditional Error Recovery  

 
Reboot potentially augmented with checkpointing is a traditional approach to error 
recovery. Database systems use a combination of logging and replay to avoid the state 
loss normally associated with rolling back to a previous checkpoint [15]. Transactions 
support consistent atomic operations by discarding partial updates if the transaction 
fails before committing. There has recently been renewed interest in applying many of 
these classical techniques in new computational environments such as Internet 
services [26] and in extending these techniques to reboot a minimal set of components 
rather than the complete system [1].  
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6.3 Manual Data Structure Repair  
 
The Lucent 5ESS telephone switch [19, 17, 22, 16] and IBM MVS operating system 
[25] use inconsistency detection and repair to recover from software failures. The 
software in both of these systems contains a set of manually coded procedures that 
periodically inspect their data structures to find and repair inconsistencies. The 
reported results indicate an order of magnitude increase in the reliability of the system 
[15].  
 

6.4 Constraint Programming  
 
Researchers have incorporated constraint mechanisms into programming languages. 
One such system is Kaleidoscope [23]. Kaleidoscope allows the developer to specify 
constraints that the system should maintain. The developer is intended to write 
programs using a hybrid of imperative style programming and constraints where 
appropriate. Kaleidoscope does not include any analog of our model-based approach, 
as a result it can be very difficult if not impossible to express constraints on recursive 
data structures or other heap structures containing multiple elements. Another 
example of a constraint maintenance system as a programming abstraction is 
Alphonse [20]. Rule based programming [24, 7] is a related technique in which the 
developer defines a test condition and an action to take in response.  
 

6.5 Integrity Maintenance in Databases 
  
Database researchers have developed integrity management systems that enforce 
database consistency constraints. These systems typically operate at the level of the 
tuples and relations in the database, not the lower-level data structures that the 
database uses to implement this abstraction. One approach is to provide a system that 
assists the developer in creating a set of production rules that maintain the integrity of 
a database [3]. This approach has been extended to enable the system to automatically 
generate both the triggering components and the repair actions [2]. Researchers have 
also developed a database repair system that enforces Horn clause constraints and 
schema constraints (which can constrain a relation to be a function) [29]. Our system 
supports a broader class of constraints — logical formulas instead of Horn clauses. It 
also supports constraints which relate the value of a field to an expression involving 
the size of a set or the size of an image of an object under a relation. Finally, it uses 
partition information to improve the precision of the termination analysis, enabling 
the verification of termination for a wider class of constraint systems.  
 

6.6 Specification-Based Repair  
 
In our previous research, we have developed a specification-based repair system that 
uses external constraints to explicitly translate the model repairs to the concrete data 
structures [10, 11, 9]. One disadvantage of this approach in comparison with the 
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approach presented in this report is a potential lack of repair effectiveness — there is 
no guarantee that the external constraints correctly implement the model repairs, and 
therefore no guarantee that the concrete data structures will be consistent after repair. 
Another disadvantage is that it requires the programmer to provide the specifications, 
as opposed to the technique presented in this report, which obtains the specifications 
automatically.  
 

6.7 File Systems  
 
Some journaling or log-structured file systems are always consistent on the disk, 
eliminating the possibility of file system corruption caused by a system crash [21, 28]. 
Data structure repair remains valuable even for these systems in that it can enable the 
system to recover from file system corruption caused by other sources such as 
software errors or disk hardware damage.  
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